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Three procedures for incorporating higher level electronic structure data into reaction path dynamics calculations
are tested. In one procedure, variational transition state theory with interpolated single-point energies, which
is denoted VTST-ISPE, a few extra energies calculated with a higher level theory along the lower level
reaction path are used to correct the classical energetic profile of the reaction. In the second procedure, denoted
variational transition state theory with interpolated optimized corrections (VTST-IOC), which we introduced
earlier, higher level corrections to energies, frequencies, and moments of inertia are based on stationary-point
geometries reoptimized at a higher level than the reaction path was calculated. The third procedure, called
interpolated optimized energies (IOE), is like IOC except it omits the frequency correction. Three hydrogen-
transfer reactions, CH3 + H′H f CH3H′ + H (R1), OH + H′H f HOH′ + H (R2), and OH+ H′CH3 f
HOH′ + CH3 (R3), are used to test and validate the procedures by comparing their predictions to the reaction
rate evaluated with a full variational transition state theory calculation including multidimensional tunneling
(VTST/MT) at the higher level. We present a very efficient scheme for carrying out VTST-ISPE calculations,
which are popular due to their lower computational cost. We also show, on the basis of calculations of the
reactions R1-R3 with eight pairs of higher and lower levels, that VTST-IOC with higher level data only at
stationary points is a more reliable dual-level procedure than VTST-ISPE with higher level energies all along
the reaction path. Although the frequencies along the reaction path are not corrected in the IOE scheme, the
results are still better than those from VTST-ISPE; this indicates the importance of optimizing the geometry
at the highest possible level.

1. Introduction

Variational transition state theory (VTST) with multidimen-
sional tunneling (MT) contributions, which we abbreviate as
either VTST/MT or as semiclassical VTST (SC-VTST), has
been shown to provide a practical yet accurate method for
calculating chemical reaction rate constants for gas-phase1,2 and
condensed-phase2,3 processes. Thus, there is considerable interest
in developing efficient ways to carry out such calculations,
especially in the context of direct dynamics,2,4-9 an approach
in which rate constants are evaluated directly from electronic
structure calculations without the intermediacy of an explicit
potential energy function.

Direct VTST/MT dynamics calculations require electronic
structure information over an entire reaction path3-14 and in a
corner-cutting reaction swath.6,8-11,15 In recent work,10,11 we
have shown that dual-level direct dynamics calculations can
provide a powerful way to combine such information computed
reasonably cost-effective lower level of electronic structure
theory with selected results computed with more expensive (and
presumably more reliable) electronic structure methods. We use
the label VTST-IC, which denotes variational transition state
theory with interpolated corrections, to refer to carrying out a
VTST calculation at a lower level and then correcting the
reaction path data (and possibly the reaction swath data) obtained

at that level by using more limited data obtained at a higher
level. One systematic version10,11 of this approach, which we
will now call VTST-IOC, where the suffix denotes interpolated
optimized corrections, involves high-level geometryoptimization
at reactants, saddle point, and products. An alternative VTST-
IC approach has also been used by several groups;5,16-18 in this
approach, one first calculates the reaction path at the lower level
(which is also the first step in the VTST-IOC method10,11) but
then corrects the energy along the reaction pathwithout
reoptimizing any geometries. (The motivation for this simpli-
fication is that geometry optimization is very expensive, and
for high enough higher levels, it is prohibitively expensive). In
keeping with a widely accepted language used in quantum
chemistry, such calculations are called “single-point energies”.
Thus, to distinguish the two VTST-IC approaches, we called
the former VTST-IOC to denote interpolated optimized cor-
rections and the latter VTST-ISPE to denote interpolated single-
point energies. We will also test a simpler version of the VTST-
IOC method, called VTST with interpolated optimized energies
(VTST-IOE), in which the higher level frequency calculation
is omitted.

For properties of stable species, a single-point energy
calculated using level X at a geometry optimized with level Y
is denoted X//Y.19 For reaction path calculations, improving the
system properties (energies, moment of inertia, and/or frequen-
cies) by using calculations carried out with level X to correct a
set of reaction path data calculated at level Y is called X//Y if
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no geometry reoptimization is performed. If, however, station-
ary-point geometries are reoptimized at level X, it is called X///
Y, and if the geometry is reoptimized at level X′ (intermediate
between X and Y), it is called X//X′///Y. In this language, the
question addressed here is to compare the X///Y and X//Y
approaches to rate constant calculations. Because geometry
optimization is computationally demanding, X//Y is typically
less expensive than X///Y, even when many single-point energies
are calculated. Since corrections are made all along the path,
can the method be not only less expensive but also more
accurate?

A systematic VTST-IOC algorithm was presented previ-
ously.10,11 In section 2, we present a systematic VTST-ISPE
algorithm. In section 3, we present a series of comparisons of
full rate constant calculations in which we directly compare
calculations at levels X, X///Y, and X//Y. These results show
that a critical issue is how severely X//Y calculations along a
reaction path overestimate the saddle point heightVq calculated
with geometry optimization at level X. We also present
additional calculations relevant to the latter question and
especially designed to see (1) if the conclusions are changed as
the qualities of the X and Y levels are improved and (2) whether
density functional theory20 (DFT) or the hybrid Hartree-Fock-
DFT method21,22 is particularly useful for level Y. Section 4
summarizes the major conclusions.

2. Theory

2.1. VTST/MT. We consider four levels of dynamics
calculations: TST (conventional transition state theory);23 CVT
(canonical variational theory);24 CVT/ZCT (CVT with zero-
curvature tunneling);25 CVT/SCT (CVT with small-curvature
tunneling).26 In all four cases, vibrations are treated with the
quantum mechanical harmonic oscillator approximation in
curvilinear coordinates13c,27and rotational partition functions are
evaluated by classical mechanics. Motion along the reaction
coordinate is treated classically in TST and CVT and semiclas-
sically in CVT/ZCT and CVT/SCT. In CVT/ZCT and CVT/
SCT, the effective potential for tunneling is the ground-state
vibrationally adiabatic potential curve25

wheres is the signed distance along the reaction path in mass-
scaled (i.e., isoinertial) coordinates (withs negative on the
reactant side of the saddle point and positive on the product
side), VRP(s) is the Born-Oppenheimer potential along the
reaction path (RP), andεG(s) is the local zero-point energy. We
use the convention thatVRP(s) is zero at reactants. The
transmission coefficient at temperatureT is25

where

k̃ is Boltzmann’s constant,E is total energy,PG is the ground-
state transmission probability in the ZCT or SCT approximation,
and s/

CVT is the location of the canonical variational transition
state at temperatureT.

A quantity that will play an important role in the development
below is the representative tunneling energy at temperatureT,
which we callErep(T). This is defined as the maximum of the
integrand of eq 2 at temperatureT for the most reliable available
tunneling approximation, which is the SCT approximation in

the present paper. The representative turning points of the
reaction coordinate are then defined by the solutionss of

The most negative solution of eq 4 is calleds<(T), and the most
positive solution is calleds>(T).

2.2. VTST-ISPE.To calculate the reaction rates with VTST-
ISPE, one first calculates a converged RP at the lower level Y.
Then, a spline under tension28 is used to interpolate the energy
difference of a few single-point energies along the RP between
the higher level X with the geometries obtained at level Y and
the energy from lower level Y; that is, one interpolates the
difference quantity

as a function of the reaction coordinates, which is the signed
distance from the level-Y saddle point along the RP. As in our
previous interpolated variational transition state theory with
mapping29 (IVTST-M) method, a mapped coordinatez is used
to provide a systematic interpolating procedure for both bimo-
lecular and unimolecular reactions. For unimolecular reactions,
the domain of each mapping function extends from reactants
(R) to products (P); for bimolecular reactions, it extends from
R or a well in the reactant valley (reactant well, RW) to P or a
well in the product valley (product well, PW). To map the
reaction coordinates into thez space, the following expression
is used:

Information from the lower level is used to obtain the parameters
s0 andL for the mapping. First, we define

whereµ is the scaling mass,25 andω‡ is the imaginary frequency
of the saddle point at the lower level. Then, we define

and

Then the parameters of eq 6 are obtained from these parameters
by

and

For unimolecular reactions, the mapping is from a finite interval
in s to a finite interval inz. For the bimolecular reactions, the
reaction coordinates is located between [-∞, ∞], but we may

Va
G(s) ) VRP(s) + ε

G(s) (1)

κ(T) ) â∫0

∞
dEPG(E) exp(â{Va

G[s/
CVT(T)] - E}) (2)

â ) 1/k̃T (3)

Va
G(s) ) Erep(T) (4)

∆VRP(s) ) VRP
X//Y(s) - VRP

Y (s) (5)

z ) 2
π

arctan(s - s0

L ) (6)

sA
0 ) -xVRP(s ) 0) - VRP(sX)

|ωq|2µ
; X ) R or RW (7)

sB
0 ) xVRP(s ) 0) - VRP(sX)

|ωq|2µ
; X ) P or PW (8)

sA ) -min(|sA
0 |, 2sB

0) (9)

sB ) min(2|sA
0 |, sB

0) (10)

s0 )
sA + sB

2
(11)

L )
|sA| + sB

2
(12)
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choose to recognize a well in the reactant and/or product
valley.29 Thus, the mapping is from an infinite, semi-infinite,
or finite range ofs to a finite range ofz. In all cases, we apply
the spline fit to the differences of the Born-Oppenheimer
energies within the finite range ofz. We write the dual-level
interpolated energy as

where DL is dual level (i.e., VTST-ISPE level, denoted X//Y)
and LL is the lower level (i.e., Y).

To have a general, testable method, we must systematize not
only the algorithm for interpolation, which we have just
presented, but also the scheme for where to place the extra
energies, which we discuss next. We will use the notation
VTST-ISPE-n(l), wheren denotes the number of nonstationary
points along the path at which single-point energies are
calculated andl is a list of their positions in reduced units. The
reduced unit is different on the reactant and product side of the
saddle point and is calledR on the reactant side andR′ on the
product side. We takeR ass<(T ) 300 K) andR′ ass>(T )
300 K), where these values are evaluated by a full tunneling
calculation at the lower level.

The notation is most clearly specified by an example.
Consider the specification VTST-ISPE-4((0.1, (1.2), this
means that the interpolation of eq 5 is based on single-point
energies evaluated at seven points, namely reactants or a reactant
well, the saddle point, products or a product well, and four
nonstationary points. (Note that one always requires reactant
information for a rate constant calculation so that if interpolation
is based on a reactant well, one requires an eighth single-point
energy at reactants.) In addition, the example specification
denotes that the nonstationary points are at(0.1, (1.2 in
reduced units, i.e., ats ) -1.2R, -0.1R, +0.1R′, +1.2R′. Note
thatR andR′ are evaluated from the low-level SCT calculation
at 300 K for all ISPE calculations, even those at the ZCT level
or for temperatures above or below 300 K. The goal is to use
a single set of points to carry out a set of calculations over a
range of temperatures.

This interpolation procedure is general for all cases. Whenn
) 0, the differences of energies at three stationary points (i.e.,
reactants, products, and saddle point) are used for spline fit for
eq 13. We use the convention of setting the energies of the
reactants to zero; therefore, the sum of the energies of the
products is the energy of reaction.

2.3. VTST-IOC. For comparison, we will also report some
results obtained with the VTST-IOC method. These methods
have been described previously,10,11and our general procedure
involves two options, called SECKART and DECKART, for
interpolatingVRP and three options, called ICA, ICR, and ICL
for interpolating vibrational frequencies. In this paper, we use
three combinations: (i) the original SECKART-ICA method,10

(ii) the DECKART-ICL combination recommended later,11 and
the combination we now favor on the basis of considerable
additional experience (including unpublished work in our group),
namely, SECKART-ICL. The keyword SECKART (“single
Eckart”) denotes the procedure in which a single Eckart potential
is fit to the differences between the higher level and lower level
energies.10 The keyword DECKART (“dual Eckart”) denotes
the procedure in which the dual-level energies are the sum of
the values from the lower level and the difference of two Eckart
functional fits to two individual data point sets from the lower
and the higher level method.11 The keyword ICA indicates that
the dual-level frequencies are corrected based on the arithmetic

difference of the frequencies.10 The keyword ICL means that
the frequencies are corrected based on the logarithm of the
ratio.11

2.4. VTST-IOE. In present work, we also introduce another
method to perform the dual-level calculations. In this case, the
interpolation scheme is the same as the VTST-IOC algorithm
explained in the previous section, except that the harmonic
analysis is not carried at the higher level. Therefore, both the
energy and moments of inertia are corrected as indicated in the
VTST-IOC method, but the frequencies along the reaction path
are not corrected. We called this method VTST-IOE to denote
VTST with interpolated optimized energies.

2.5. Electronic Structure Methods.The following treatments
of electron exchange and correlation will be employed:

HF, Hartree-Fock;19 MP2, Møller-Plesset second-order
perturbation theory;19,30 QCISD(T), quadratic configuration
interaction based on single and double excitations and pertur-
bative inclusion of connected triple excitations;31 BLYP, DFT
based on the Becke gradient functional32 for exchange and the
Lee-Yang-Parr (LYP) functional33 for correlation; B3PW91,
Becke’s three-parameter hybrid HF-DFT21 based on the PW91
gradient functional34 for correlation; B3P86, Becke’s three-
parameter hybrid HF-DFT approach but based on Perdew’s 1986
gradient functional35 for correlation; B3LYP, Becke’s three-
parameter hybrid HF-DFT approach but based on the LYP
functional for correlation;22 AM1, Austin model 1;36 AM1-SRP
Austin model 1 with specific reaction parameters7a,37adjusted
for reaction R3.10 These treatments are combined with the
following basis sets: STO-3G,38 3-21G,39 6-31G,40 6-31G*,40

6-311G**,41 and cc-pVTZ.42 The AM1 and AM1-SRP models
use a minimum basis set.36

2.6. Analytic Potential Surface.For reaction R1, we present
some calculations using the analytic potential energy function
J1 presented previously.43 This surface was fit in part to
experimental data.

2.7. Notation.We denote the Born-Oppenheimer energy of
reaction as∆E and the Born-Oppenheimer barrier height at
an optimized saddle point asVq, in both cases exclusive of zero-
point energy. In dual-level methods, we denote a barrier height
calculated using lower level geometries asV(s ) 0), again
exclusive of zero-point energy. We denote the imaginary
frequency at the saddle point asωq, and we denote distance
between atoms A and B at the saddle point asr q(AB).

3. Results and Discussion

To test the ISPE procedure, we calculated reaction rates for
three atom-transfer reactions,

with a variety of levels and combinations of levels. All three
reactions were treated as bimolecular reactions without recog-
nizing wells, and the vibrational frequencies were evaluated in
redundant internal coordinates. For each pair of levels selected
for testing dual-level methods, we carried out four types of
calculations: (i) single-level calculations at the lower level and
higher level; (ii) VTST-IOC calculations by the SECKART-
ICA, DECKART-ICL, and SECKART-ICL algorithms (iii)
VTST-IOE calculations with energy corrections based on
SECKART algorithm; and (iv) VTST-ISPE-n(l) calculations
with n ) 0, 2, 4, and 18. Forn ) 2, we consider nine possible

VRP
DL(s) ) VRP

LL(s) + spline(∆VRP(s), z) (13)

CH3 + H′H f CH3H′ + H (R1)

OH + H′H f HOH′ + H (R2)

OH + H′CH3 f HOH′ + CH3 (R3)
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lists of two s values. Then ) 4 calculations use two of these
pairs, and then ) 18 calculations use all nine.

The goal of the present paper is to test systematic methodolo-
gies and develop recommendations for the best strategies,not
to calculate accurate rate constants. Thus, we consider it more
useful to test dual-level strategies for cases where the lower
and higher levels differ significantly than to test the highest
affordable levels. Cases where the lower and higher levels differ
significantly provide the biggest challenges to our algorithms
for interpolating corrections to the lower level based on a
minimum amount of higher level information.

In all cases, we take the single-level calculation at the higher
level as the goal of the interpolation method. We ask how close
can we come to a full calculation at the higher level if we can
afford only a limited number of higher-level calculations, either
geometry optimizations, energies, and Hessian at reactants,
saddle point, and products for VTST-IOC calculations or single-
point energies atn + 3 geometries for VTST-ISPE calculations.

To compare the dual-level results with the higher level values,
we compute the mean unsigned difference in the logarithm of
the calculated rate constant at five temperatures and at four
different dynamical levels

whereTi is one of five temperatures (300, 400, 600, 1000, and
1500 K), j is one of the four dynamical methods (TST, CVT,
CVT/ZCT, CVT/SCT), HL denotes the higher level, and X
denotes the lower-level (LL), the VTST-IOC (///) result, the
VTST-IOE, or the VTST-ISPE (//) result.

For most of the calculations, we set the scaling massµ25 equal
to 1.0 amu, the exception being the calculations with J1 as the
lower level where we usedµ ) 1.78 amu. (Calculated rate
constants are independent ofµ, but step sizes and potential
curves do depend onµ.) All calculations were performed on an
SGI Origin 2000 supercomputer.

3.1. Reaction R1.Table 1 gives a survey of the energy of
reaction and saddle-point properties calculated for reaction R1
with a variety of electronic structure levels and also with the
J1 potential energy surface. The most reliable results are J1 and
QCISD(T)/cc-pVTZ. The combinations we selected as best for
testing the theory are MP2/3-21G as “higher level” with the J1
or HF/STO-3G as “lower level” and MP2/6-31G* as “higher
level” with BLYP/6-31G*, B3PW86, or B3LYP as “lower
level”.

The calculations with MP2/3-21G as the higher level provide
a very challenging test of theory because, as seen in Table 1,
∆E as calculated at the lower level deviates from the higher
level by 6-9 kcal/mol,Vq is off by -5 to +9 kcal/mol,ωq is
off by ∼800-1000 cm-1, andrq(CH′) is off by 0.055-0.10 Å.
Table 1 also shows the single-point energy calculations at the
lower level saddle-point geometry, which remove a large part
of the error in the lower level barrier height. We remind the
reader that errors in this paper are always measured with respect
to full calculations at the “higher level” involved in the test
and are not errors with respect to experiment.

Figure 1 shows what happens when MP2/3-21G single-point
calculations are carried out along the HF/STO-3G reaction path.
Since HF/STO-3G predicts a positive∆E, a late transition state
is expected according to Hammond’s postulate,44 and Table 1
shows that this indeed is what we found. As a consequence,
Figure 1 shows that the maximum of the potential energy profile
at the MP2/3-21G//HF/STO-3G level is shifted toward reactants
compared to the HF/STO-3G reaction path.

The maximum of the higher levelVRP(s) along the lower level
path is 15.09 kcal/mol for MP2/3-21G//J1, which is in reason-
able agreement with the full high-level result of 15.19 kcal/
mol in Table 1.

TABLE 1: Energies, Imaginary Frequency, and Interatomic Distances of Reaction R1

method ∆E (kcal/mol) V q (kcal/mol) ωq (cm-1) r q(CH′) (Å) r q(H′H) (Å)

J1 -2.77 10.23 988 i 1.346 0.900
HF/STO-3G 0.67 24.47 2738 i 1.302 0.915
MP2/3-21G -8.30 15.19 1960 i 1.401 0.895
HF/6-31G* -4.76 20.49 2241 i 1.378 0.923
MP2/6-31G* -11.23 14.77 1856 i 1.423 0.879
BLYP/6-31G* -2.47 5.81 962 i 1.448 0.891
B3P86/6-31G* -3.87 6.00 1046 i 1.433 0.881
B3PW91/6-31G* -4.91 7.25 1091 i 1.437 0.881
B3LYP/6-31G* -3.06 7.37 1145 i 1.423 0.890
QCISD(T)/cc-pVTZ -2.90 12.20 1.395 0.898
MP2/3-21G//J1 -8.54 15.09a

MP2/3-21G//HF/STO-3G -9.04 13.89a

MP2/6-31G*//BLYP/6-31G* -11.26 14.77a

MP2/6-31G*//B3P86/6-31G* -11.25 14.76a

MP2/6-31G*//B3LYP/6-31G* -11.24 14.77a

a V (s ) 0).

MUDL )
1

20
∑
i)1

5

∑
j)1

4

|log10 k X
j (Ti) - log10 k HL

j (Ti)| (14)

Figure 1. The Born-Oppenheimer energy along the reaction path for
R1 calculated at the HF/STO-3G level is shown as a solid curve, and
the solid triangles are single-point energy calculations at the MP2/3-
21G//HF/STO-3G level. The reduced mass is 1 amu.
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The single-point energies obtained by the MP2/6-31G* higher
level with DFT and hybrid HF-DFT methods as the lower level
are also tabulated in Table 1. The results are typical in that DFT
and hybrid HF-DFT methods underestimate the barrier height,
which is the usual case. Since the geometries of the stationary
points at the lower level are close to the higher level ones in
this case, the interpolated position of the saddle point at the
dual level is not shifted far from the saddle point optimized at
the lower level (i.e., not shifted far froms ) 0). Figures 2 and
3 illustrate how the reaction paths agree better for the MP2/6-
31G* tests than for the MP2/3-21G tests. Thus, we anticipate

that the MP2/3-21G tests will provide a greater challenge for
interpolation methods for calculating rate constants.

The dynamics calculations with J1 as the lower surface were
carried out with a modified version of Polyrate7.9.147 with the
higher level information obtained from calculations with Gauss-
ian94.46 The other calculations were carried with a modified
version of Gaussrate7.9.1.48 The reaction paths were followed
using the Page-McIver algorithm,45 with a step size of 0.001a0,
except for the B3LYP/6-31G* calculation, which used a step
size of 0.005a0 to avoid numerical instability. The Hessians were
evaluated at every 25 gradient steps for three of the cases, with
the exceptions being every five steps for the J1 and every two
steps for the B3LYP/6-31G* calculations. The small-curvature
tunneling calculation is performed with 40 coordinate points
for each action integral and Boltzmann averaged using 40
energies (but only 10 energies for J1). All calculations assign
the symmetry number of the forward reaction as 2. Vibrational
frequencies were evaluated based on a set of redundant internal
coordinates13c,27 that consists of five stretches, six bends, and
one doubly degenerate linear bend.

The tests of the rate constant methods are shown in Table 2.
This table can be used to make two kinds of comparisons: (1)
compare the MUDL of different dual-level methods; (2)
compare the MUDL of the VTST-ISPE method with different
numbers of extra points used for spline fits. The VTST-IOC
method with SECKART for the energy correction and the ICA
scheme for the frequency corrections is shown to be the best
dual-level method in overall performance. However, the VTST-
IOC option with DECKART for the energy correction and the

Figure 2. Bond lengths of the H-H and C-H bonds of reaction R1
in angstroms. The solid curve represents the MP2/3-21G calculation
with the saddle point indicated as a solid circle, the dotted line is the
HF/STO-3G single-level calculation with the saddle point as a solid
square, and the dashed line is the calculation based on the analytical
potential energy surface J1 with the saddle point as a solid diamond.

Figure 3. Bond lengths in angstroms of the H-H and C-H bonds
along the reaction path of reaction R1. The MP2/6-31G* calculation
is shown as a solid line with the saddle point as a solid circle. The
BLYP/6-31G* calculation is indicated as a dotted line with the saddle
point as a solid square. The B3LPY/6-31G* calculation is indicated as
a short-dashed line with the saddle point as a solid diamond, and the
B2LYP/6-31G* calculation is indicated as a long dashed line with the
saddle point as a solid triangle.

TABLE 2: Mean Unsigned Difference in Logarithm of the
Rate Constant for Reaction R1 at the X///Y or X//Y Level

X ) MP2/3-21G MP2/6-31G*

Y ) J1 HF/STO-3G BLYP B3LYP B3P86

lower level 1.90 3.51 3.47 2.83 3.35
IOC-SECKART-ICA 0.21 0.28 0.04 0.02 0.01
IOC-DECKART-ICL 0.43 0.35 0.29 0.29 0.28
IOC-SECKART-ICL 0.21 0.29 0.04 0.02 0.02
IOE-SECKART 0.27 0.29 0.09 0.06 0.05
ISPE-0 0.22 0.34 0.11 0.10 0.09

ISPE-2 ((0.1) 0.38 0.31 0.11 0.06 0.06
ISPE-2 ((0.2) 0.28 0.63 0.11 0.06 0.06
ISPE-2 ((0.4) 0.19 0.89 0.12 0.07 0.07
ISPE-2 ((0.6) 0.15 0.85 0.13 0.07 0.07
ISPE-2 ((0.8) 0.12 0.96 0.13 0.07 0.07
ISPE-2 ((1.0) 0.11 0.90 0.13 0.07 0.07
ISPE-2 ((1.2) 0.20 0.86 0.14 0.07 0.07
ISPE-2 ((1.6) 0.18 0.62 0.15 0.08 0.07
ISPE-2 ((2.0) 0.25 0.68 0.18 0.09 0.08

ISPE-4 ((0.8,(0.1) 0.12 0.83 0.13 0.08 0.07
ISPE-4 ((0.8,(0.2) 0.12 0.82 0.13 0.08 0.07
ISPE-4 ((0.8,(0.4) 0.13 0.91 0.13 0.08 0.07
ISPE-4 ((1.0,(0.1) 0.10 0.64 0.14 0.08 0.07
ISPE-4 ((1.0,(0.2) 0.11 0.86 0.14 0.08 0.07
ISPE-4 ((1.0,(0.4) 0.12 0.91 0.14 0.08 0.07
ISPE-4 ((1.0,(0.6) 0.11 0.78 0.14 0.08 0.07
ISPE-4 ((1.0,(0.8) 0.11 0.69 0.14 0.08 0.07
ISPE-4 ((1.0,(1.2) 0.12 0.68 0.14 0.08 0.07
ISPE-4 ((1.0,(1.6) 0.15 0.75 0.15 0.08 0.08
ISPE-4 ((1.0,(2.0) 0.16 0.83 0.16 0.09 0.09
ISPE-4 ((1.2,(0.1) 0.12 0.55 0.14 0.09 0.08
ISPE-4 ((1.2,(0.2) 0.12 0.87 0.14 0.09 0.07
ISPE-4 ((1.2,(0.4) 0.12 0.92 0.14 0.09 0.07
ISPE-4 ((1.6,(0.1) 0.17 0.52 0.16 0.10 0.08
ISPE-4 ((1.6,(0.2) 0.17 0.86 0.16 0.10 0.08
ISPE-4 ((1.6,(0.4) 0.16 0.92 0.16 0.10 0.08
ISPE-4 ((1.6,(0.8) 0.16 0.76 0.15 0.09 0.08

ISPE-18 0.13 0.93 0.16 0.10 0.08
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ICL scheme for the frequency corrections is the worst dual-
level correction method because it gives a barrier width that is
too narrow. Therefore, we only use the SECKART option for
the energy correction in the VTST-IOE calculations. The results
from the calculations using the VTST-IOE method are expected
to be worse than those from the VTST-IOC method because
the rate constants obtained from the conventional transition state
theory in the VTST-IOC method are exactly the same as the
single higher level calculation, but they are different in the
VTST-IOE method.

The VTST-ISPE-0 method gives intermediate results. One
might think that the result should become better if we keep
adding more and more single-point energies for the spline fit.
However, the VTST-ISPE calculations with 18 extra points are
not systematically better than ISPE-0. The best case is to use
four nonstationary points along the low-level reaction path,
where two points are close to the 300 K turning points and are
useful primarily to estimate the width of the barrier and two
other points are close to the lower level saddle point and are
useful primarily to locate the dual-level saddle point. (As indi-
cated earlier, the dual-level saddle point is no longer ats ) 0.)

3.2. Reaction R2.Table 3 shows the energy, frequency, and
geometry information for reaction R2, and Figure 4 shows the
reaction path at different levels. The MP2/6-31G calculation
predicts a longer breaking-bond distance than does the higher
level MP2/6-311G** calculation by about 0.05 Å; however, the
saddle-point geometry obtained from the MP2/6-31G* calcula-
tion differs from the higher level calculation by only 0.03 Å.
The MP2/6-31G calculation predicts a later transition state than
does the MP2/6-31G** calculation.

The single-level reaction paths were calculated with the
Page-McIver algorithm45 with a step size of 0.001a0, and the
Hessians were evaluated at every 20th gradient step. The
vibrational frequencies were evaluated with nonredundant
internal coordinates.27 (Since R2 has a chainlike transition state,
3N - 6 internal coordinates are enough to describe the
generalized transition states.) The electronic energy, gradients
and Hessians were obtained with the electronic structure package
Gaussian94,46 and the dynamics calculations were carried out
with a modified version of Gaussrate7.9.1.48 The small-curvature
tunneling calculation was performed with 40 coordinate points
for each action integral and Boltzmann averaged using 40
energies. For both R2 and R3, the partition function includes
both the2Π3/2 and2Π1/2 states of OH. The symmetry number
of reaction R2 is 2.

Table 4 shows the MUDL values from calculations with
single-level and dual-level methods. Since the MP2/6-31G
saddle point and reaction path differ from the MP2/6-311G**
one more than the MP2/6-31G* path does or much more than
the deviation for any of the three cases in Table 2, we expect
a larger MUDL value for MP2/6-311G*//MP2/6-31G in Table

TABLE 3: Energies, Imaginary Frequency, and Interatomic Distances of Reaction R2

level ∆E (kcal/mol) V q (kcal/mol) ωq (cm-1) r q(OH′) (Å) r q(H′H) (Å)

MP2/6-31G -9.73 15.88 2509 i 1.252 0.870
MP2/6-31G* -18.77 12.87 2229 i 1.292 0.842
MP2/6-311G** -19.21 9.85 1725 i 1.311 0.819
MP2/6-311G**//MP2/6-31G -18.37 9.59a

MP2/6-311G**//MP2/6-31G* -19.10 9.92a

a V (s ) 0).

Figure 4. Bond lengths in angstroms of the H-H and C-H bonds
along the reaction path of reaction R2. The MP2/6-311G** calculation
is shown as a solid line with the saddle point as a solid circle. The
MP2/6-31G* calculation is shown as a dotted line with the saddle point
as a solid square. And the MP2/6-31G calculation is shown as a dashed
line with the saddle point as a solid diamond.

TABLE 4: Mean Unsigned Difference in Logarithm of the
Rate Constant for Reaction R2 at the X///Y or X//Y Level

X ) MP2/6-311G**

Y ) MP2/6-31G MP2/6-31G*

lower level 2.17 1.06
IOC-SECKART-ICA 0.05 0.02
IOC-DECKART-ICL 0.10 0.11
IOC-SECKART-ICL 0.07 0.09
IOE-SECKART 0.14 0.08
ISPE-0 0.22 0.07

ISPE-2 ((0.1) 0.41 0.10
ISPE-2 ((0.2) 0.40 0.11
ISPE-2 ((0.4) 0.42 0.13
ISPE-2 ((0.6) 0.46 0.17
ISPE-2 ((0.8) 0.50 0.20
ISPE-2 ((1.0) 0.55 0.18
ISPE-2 ((1.2) 0.59 0.18
ISPE-2 ((1.6) 0.64 0.18
ISPE-2 ((2.0) 0.68 0.19

ISPE-4 ((0.8,(0.1) 0.45 0.13
ISPE-4 ((0.8,(0.2) 0.43 0.13
ISPE-4 ((0.8,(0.4) 0.42 0.12
ISPE-4 ((1.0,(0.1) 0.47 0.14
ISPE-4 ((1.0,(0.2) 0.44 0.13
ISPE-4 ((1.0,(0.4) 0.42 0.13
ISPE-4 ((1.0,(0.6) 0.43 0.13
ISPE-4 ((1.0,(0.8) 0.46 0.12
ISPE-4 ((1.0,(1.2) 0.47 0.14
ISPE-4 ((1.0,(1.6) 0.47 0.16
ISPE-4 ((1.0,(2.0) 0.48 0.16
ISPE-4 ((1.2,(0.1) 0.49 0.14
ISPE-4 ((1.2,(0.2) 0.44 0.13
ISPE-4 ((1.2,(0.4) 0.42 0.13
ISPE-4 ((1.6,(0.1) 0.51 0.14
ISPE-4 ((1.6,(0.2) 0.44 0.13
ISPE-4 ((1.6,(0.4) 0.42 0.12
ISPE-4 ((1.6,(0.8) 0.45 0.13

ISPE-18 0.42 0.13
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4, and indeed that is what we observe. The VTST-IOC scheme
provides reaction rates much closer to the true high-level
calculation than does the VTST-ISPE procedure. The ISPE-0
scheme works better than adding more nonstationary points for
the interpolation.

3.3. Reaction R3.Table 5 shows energetic information for
reaction R3. The specific reaction parameters (SRP) are taken
from the previous work10 where only the oxygen atom param-
eters were modified in order to obtain better agreement with
more reliable values for the classical barrier height (7.4 kcal/
mol) and the exoergicity (13.3 kcal/mol). The AM1 method
predicts a much higher barrier and lower exoergicity than the
more reliable AM1-SRP surface.

The energies for both the AM1 and AM1-SRP models were
obtained from the Mopac, version 5.07mn, computer program.49

The dynamics calculations were carried out with a modified
version of the Morate7.9.1 program.50 The reaction path is
followed using the Page-McIver algorithm45 with the cubic
algorithm to estimate the first step from the saddle point. The
gradient is calculated every 0.002a0, and the Hessian is evaluated
at every 0.01a0. The vibrational frequencies are evaluated based
on a set of 18 redundant internal coordinates,13c,27which consists
of seven stretches, eight bends, and three torsions. The lowest
real harmonic frequency, which is related to the hindered
rotation between the OH and CH3, is very small or imaginary
along the reaction path, so a hindered rotation approximation
would be appropriate for comparison to experiment, but only
the harmonic approximation is applied in the present work. The
numerical step size used for the Hessian evaluation is 0.012a0.
The small-curvature tunneling calculation was performed with
30 coordinate points for each action integral and Boltzmann
averaged using 30 energies. The symmetry number of the
reaction is 12.

Table 6 tabulates the MUDL values of R3 when AM1, AM1-
SRP///AM1, and AM1-SRP//AM1 are compared to AM1-SRP.
We see that using the combination of SECKART and ICL for
the VTST-IOC procedure provides the best dual-level results.
Adding more nonstationary points for the spline interpolation
in the VTST-ISPE procedure improves the reaction rate and
therefore generates a smaller MUDL value. Having four
nonstationary points that are close to the turning points at the
300 K SCT representative energy results in a MUDL value as
small as the SECKART-ICL combination.

3.4. Comprehensive Overview.The eight cases in Tables
2, 4, and 6 provide a variety of cases that allow us to search for
a robust, best-compromise method that does as well as possible
on all of them. Table 7 therefore presents MUDL values
averaged over all eight cases. Since each individual MUDL
already represented 20 tests of the methods (four dynamical
levels and five temperatures), the results in Table 7 represent
an average over 160 test cases. Since methods that do well for
one or another reaction do not necessarily do well in other cases,
all our final conclusions are based in Table 8.

First, consider the IOC methods. As far as average errors are
concerned, the original SECKART scheme works better than
the newer DECKART scheme, and we now retract our 1997
recommendation to use the latter. The choice between ICA and

ICL options has less effect on the average errors. Although the
ICA option gives a slightly smaller error, we recommend the
ICL option because it has an important qualitative advantage,
namely, it never predicts unphysical negative frequencies.11

Next, consider the VTST-ISPE results. First of all, we see
that using a dense set of points, e.g., VTST-ISPE-18, has no
advantage over using only two or four nonstationary points or
even zero nonstationary points. Nevertheless, there are two test
cases, the first case in Table 2 and the case in Table 6, where
n > 0 gives significantly better results thann ) 0, and one
might be tempted to tryn > 0. If one does so, Table 8 shows
that putting the first two points very close to the saddle point is
the best strategy. Having made this choice, the best location
for adding two more points appears to be close to the turning

TABLE 5: Energies, Imaginary Frequency, and Interatomic Distances of Reaction R3

level ∆E (kcal/mol) V q (kcal/mol) ωq (cm-1) r q(OH′) (Å) r q(CH′) (Å)

AM1 -21.15 11.12 1729 i 1.352 1.204
AM1-SRP -13.28 7.37 1445 i 1.367 1.211
AM1-SRP//AM1 -11.34 7.37a

a V (s ) 0).

TABLE 6: Mean Unsigned Difference in Logarithm of the
Rate Constant for Reaction R3 at the AM1-SRP///AM1 or
AM1-SRP//AM1 Level

procedure MUDL

lower level 1.27
IOC-SECKART-ICA 0.13
IOC-DECKART-ICL 0.21
IOC-SECKART-ICL 0.07
IOE-SECKART 0.07
ISPE-0 0.35

ISPE-2 ((0.1) 0.12
ISPE-2 ((0.2) 0.12
ISPE-2 ((0.4) 0.10
ISPE-2 ((0.6) 0.08
ISPE-2 ((0.8) 0.09
ISPE-2 ((1.0) 0.10
ISPE-2 ((1.2) 0.13
ISPE-2 ((1.6) 0.15
ISPE-2 ((2.0) 0.31

ISPE-4 ((0.8,(0.1) 0.12
ISPE-4 ((0.8,(0.2) 0.12
ISPE-4 ((0.8,(0.4) 0.11
ISPE-4 ((1.0,(0.1) 0.12
ISPE-4 ((1.0,(0.2) 0.12
ISPE-4 ((1.0,(0.4) 0.11
ISPE-4 ((1.0,(0.6) 0.10
ISPE-4 ((1.0,(0.8) 0.08
ISPE-4 ((1.0,(1.2) 0.08
ISPE-4 ((1.0,(1.6) 0.09
ISPE-4 ((1.0,(2.0) 0.15
ISPE-4 ((1.2,(0.1) 0.13
ISPE-4 ((1.2,(0.2) 0.13
ISPE-4 ((1.2,(0.4) 0.11
ISPE-4 ((1.6,(0.1) 0.14
ISPE-4 ((1.6,(0.2) 0.14
ISPE-4 ((1.6,(0.4) 0.12
ISPE-4 ((1.6,(0.8) 0.09

ISPE-18 0.12

TABLE 7: Mean Unsigned Difference in Logarithm as a
Function of Temperature

300 K 400 K 600 K 1000 K 1500 K

lower level 4.183 3.286 2.290 1.446 1.011
IOC-SECKART-ICL 0.235 0.147 0.066 0.040 0.035
IOE-SECKART 0.248 0.145 0.075 0.079 0.105
ISPE-0 0.312 0.212 0.142 0.133 0.134
ISPE-2 ((0.1) 0.313 0.232 0.159 0.127 0.136
ISPE-4 ((0.1,(1.2) 0.310 0.256 0.191 0.162 0.157
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points for the tunneling calculation at the representative tun-
neling energy for the lowest temperature of interest, i.e., VTST-
ISPE ((0.1, (1.0) or VTST-ISPE ((0.1, (1.2). The major
conclusion though is the counterintuitive one that, if one
employs our mapped interpolation, there is no systematic
advantage in adding single-point energies all along the reaction
path or even calculating any higher level single-point energies
at nonstationary points. This conclusion is not entirely a negative
result. It leads to the following positive recommendation. Instead
of dividing one resources overn + 3 or n + 4 single-point
energies, one should use only three or four points and use the
resulting savings to raise the level of electronic structure theory.

Notice that using the uncorrected lower level gives a MUDL
of 2.444 or typical error of 102.444, which is a factor of 278.
The best ISPE strategy, ISPE-0, reduces the typical error to
100.187, which is a factor of 1.54. The IOC-SECKART-ICL
method further reduces the typical error to a factor of 100.100,
which is a factor of 1.26. Thus, the VTST-IC approach is very
powerful and the recommendations for optimum VTST-IOC and
VTST-ISPE strategies should be very useful.

Why does it not pay to keep adding more points in the VTST-
ISPE method? If the higher level reaction path differs from the
lower level one, then the single-point higher level calculations
along the lower level reaction path are not being calculated along
the higher level valley floor but rather part way up the valley
walls of the higher level valley.17a This means that if one
searches for the maximum higher level energy along the lower
level path, the result will be systematically too high. That is
why we originally recommended using geometry optimization
at the higher level.10 The popularity of the single-point energy
approach, though, caused us to develop and evaluate this method
systematically. It is very pleasing that our mapped interpolation
scheme lets one recover essentially the full advantage of single-
point energy corrections from a very small set of such
corrections, namely corrections only at the stationary points.

In light of the above explanation, we believe that our con-
clusions concerning the VTST-ISPE methodology are not de-
pendent on the particular interpolating scheme that we have
used.

Having evaluated the methods over a range of temperatures,
it is interesting to consider the MUDL values of the final most
highly recommended strategies as functions of temperature. Each
entry in Table 7 is an average of 32 cases (four dynamical levels
and eight combinations of higher and lower electronic structure
levels). In Table 7, we see that the MUDL decreases as the
temperature increases. Thus, the dominant error contribution
comes from the lower temperatures. This is because the
tunneling effect is important at the low temperature, and
tunneling depends on the barrier width, which is harder to correct
than the barrier height.

In Table 9, we compare the bond lengths of the making and
breaking bonds at distances-1.2R and 1.2R′ from the lower
level saddle point. As described above, the values ofR andR′
are determined based on the turning points for SCT representa-
tive tunneling energies at 300 K. This table shows that the
tunneling region over which the potential representation should
be refined is typically a few tenths of an angstrom in width.

In Table 10, we compare the highest energy point obtained
from the interpolation based on the single-point calculations
along the lower level reaction path to the corrected energy ats
) 0 and to the true barrier height obtained from the higher level
at the optimized saddle-point geometry. The maxVHL//LL(s) value
is calculated based on a parabolic fit to the three highest energy
single-point calculations from a set of 19 points (18 nonsta-
tionary points pluss ) 0). We observe that the maxVHL//LL (s)
value is greater than the energy of the higher level saddle point
Vq,HL for all cases. This will always be the case because the
minimum energy path (MEP) at the lower level is different from
the higher level one. There is no advantage, on the average, in
following the procedure (that has been recommended by other
workers) of finding the maximum ofVHL//LL (s) over the reaction
path as compared to just evaluatingVHL//LL (s) at the lower level
saddle point.

TABLE 8: Average Mean Unsigned Difference in
Logarithm of 160 Calculated Rate Constants

procedure average MUDL

lower level 2.444
IOC-SECKART-ICA 0.095
IOC-DECKART-ICL 0.256
IOC-SECKART-ICL 0.100
IOE-SECKART 0.131
ISPE-0 0.187

ISPE-2 ((0.1) 0.194
ISPE-2 ((0.2) 0.223
ISPE-2 ((0.4) 0.246
ISPE-2 ((0.6) 0.245
ISPE-2 ((0.8) 0.265
ISPE-2 ((1.0) 0.263
ISPE-2 ((1.2) 0.278
ISPE-2 ((1.6) 0.258
ISPE-2 ((2.0) 0.306

ISPE-4 ((0.8,(0.1) 0.242
ISPE-4 ((0.8,(0.2) 0.237
ISPE-4 ((0.8,(0.4) 0.247
ISPE-4 ((1.0,(0.1) 0.221
ISPE-4 ((1.0,(0.2) 0.244
ISPE-4 ((1.0,(0.4) 0.247
ISPE-4 ((1.0,(0.6) 0.230
ISPE-4 ((1.0,(0.8) 0.219
ISPE-4 ((1.0,(1.2) 0.223
ISPE-4 ((1.0,(1.6) 0.241
ISPE-4 ((1.0,(2.0) 0.263
ISPE-4 ((1.2,(0.1) 0.217
ISPE-4 ((1.2,(0.2) 0.248
ISPE-4 ((1.2,(0.4) 0.251
ISPE-4 ((1.6,(0.1) 0.227
ISPE-4 ((1.6,(0.2) 0.259
ISPE-4 ((1.6,(0.4) 0.260
ISPE-4 ((1.6,(0.8) 0.239

ISPE-18 0.259

TABLE 9: Bond Lengths of Making and Breaking Bonds in A + HB f AH + B at Critical Points along Reaction Path

s ) -1.2|R| s ) 1.2R′
reaction level r(A-H) (Å) r(H-B) (Å) r(A-H) (Å) r(H-B) (Å)

R1 J1 1.610 0.786 1.211 1.070
HF/STO-3G 1.760 0.715 1.462 1.075
BLYP/6-31G* 1.706 0.793 1.375 0.949
B3LYP/6-31G* 1.705 0.780 1.316 0.990
B3P86/6-31G* 1.647 0.793 1.354 0.947

R2 MP2/6-31G 1.767 0.738 1.065 1.096
MP2/6-31G* 1.787 0.738 1.143 1.003

R3 AM1 1.726 1.109 1.215 1.325
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In the VTST-IOC scheme, interpolations are based on
information about the reactants, products, and saddle point (or
reactant well, product well, and saddle point) at the higher level;
the corrected barrier is used at thes ) 0 position based on a
true geometry-optimized barrier height obtained from the higher
level. However, with the VTST-ISPE scheme, the maximum
of VHL//LL points is generally shifted in thes direction and is
larger than the true barrier height. Therefore, VTST-ISPE
calculations (or similar schemes that correct energies based on
the reaction path from a lower level) are less reliable than VTST-
IOC. The present paper adds to evidence previously10,11 that
the VTST-IOC method provides a good approximation to
reaction rate constants.

Next, we return to Table 7 and consider the IOE algorithm.
Table 7 shows that this is only slightly less accurate than IOC
at temperatures up to 600 K. The main advantage of improving
the frequencies is that it yields much more accurate results atT
) 1000 K. The fact that the IOE results are uniformly better
than the ISPE ones shows the overriding importance of
optimizing the saddle-point geometry at the highest possible
level.

Table 11 is like Table 7, except that the results are sorted by
dynamical level rather then temperature. Ultimately, for practical
applications, one is mainly interested in the accuracy for the
highest dynamical level, CVT/SCT. But, we decided to include
all four dynamical levels in our evaluation of the quality of the
methods because the other levels are useful for interpretive
purposes and because they show whether one is getting the
correct answers at the highest level for the right reason or
because of cancellation of errors. The IOC-SECKART-ICL
scheme does best on average across all four levels, whereas
the ISPE schemes do worst. However, all the interpolated
correction methods are much better than using the uncorrected
low-level results at any of the four levels of dynamics.

Although we have not given any X//X′///Y results in this
paper, the results do have implications for that kind of approach.
In particular, they show the importance of carrying out the X′
step at as high a level as possible.

4. Conclusion

The VTST-ISPE method allows one to correct potential
energies along a reaction path with only a few single-point

calculations. The present paper presents a mapped interpolation
scheme for recovering essentially the full benefit of higher level
single-point energy corrections on the basis of carrying out such
calculations only at the stationary points, which should provide
useful computer resource savings for future applications.
Although the VTST-ISPE is successful at reducing the errors,
the VTST-IOC method results in much more accurate rate
constants on the average for three different reactions with eight
different pairs of higher and lower levels. Because the lower
level reaction path deviates from the minimum energy path that
would be obtained with the higher level of electronic structure
theory, applying single-point energy corrections based on the
lower level geometries results in too large a value for the
corrected barrier height. Therefore, we recommend VTST-IOC
as a more reliable dual-level method for reaction rate calcula-
tions based on the direct dynamics scheme when geometry
optimization at the higher level is computationaly affordable.
It is also possible to perform the VTST-IOC calculation without
the corrections in frequencies, and we denote this method as
VTST-IOE. The results from the VTST-IOE calculations are
significantly worse than the VTST-IOC results at high temper-
atures. Nevertheless, they are still more accurate than VTST-
ISPE calculations over the whole temperature range. The VTST-
IOE method shows us the value of carrying out a higher level
geometry optimization procedure in the dual-level schemes. It
is better to carry out more accurate calculations including
geometry optimization at the three stationary points than to carry
out many additional single-point energy calculations along the
whole reaction path.
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