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Mapped Interpolation Scheme for Single-Point Energy Corrections in Reaction Rate
Calculations and a Critical Evaluation of Dual-Level Reaction Path Dynamics Methods

1. Introduction

Variational transition state theory (VTST) with multidimen-
sional tunneling (MT) contributions, which we abbreviate as
either VTST/MT or as semiclassical VTST (SC-VTST), has
been shown to provide a practical yet accurate method for
calculating chemical reaction rate constants for gas-pRasel
condensed-phadgprocesses. Thus, there is considerable interest
in developing efficient ways to carry out such calculations,
especially in the context of direct dynamie$,® an approach
in which rate constants are evaluated directly from electronic
structure calculations without the intermediacy of an explicit
potential energy function.

Direct VTST/MT dynamics calculations require electronic
structure information over an entire reaction gatfhand in a
corner-cutting reaction swaft# 1115 In recent workl®11 we
have shown that dual-level direct dynamics calculations can
provide a powerful way to combine such information computed
reasonably cost-effective lower level of electronic structure
theory with selected results computed with more expensive (an
presumably more reliable) electronic structure methods. We use,
the label VTST-IC, which denotes variational transition state
theory with interpolated corrections, to refer to carrying out a
VTST calculation at a lower level and then correcting the
reaction path data (and possibly the reaction swath data) obtaine
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Three procedures for incorporating higher level electronic structure data into reaction path dynamics calculations
are tested. In one procedure, variational transition state theory with interpolated single-point energies, which
is denoted VTST-ISPE, a few extra energies calculated with a higher level theory along the lower level
reaction path are used to correct the classical energetic profile of the reaction. In the second procedure, denoted
variational transition state theory with interpolated optimized corrections (VTST-IOC), which we introduced
earlier, higher level corrections to energies, frequencies, and moments of inertia are based on stationary-point
geometries reoptimized at a higher level than the reaction path was calculated. The third procedure, called
interpolated optimized energies (IOE), is like IOC except it omits the frequency correction. Three hydrogen-
transfer reactions, G4+ H'H — CH;H' + H (R1), OH+ H'H — HOH' + H (R2), and OH+ H'CH; —

HOH' 4+ CHs; (R3), are used to test and validate the procedures by comparing their predictions to the reaction
rate evaluated with a full variational transition state theory calculation including multidimensional tunneling
(VTST/MT) at the higher level. We present a very efficient scheme for carrying out VTST-ISPE calculations,
which are popular due to their lower computational cost. We also show, on the basis of calculations of the
reactions R+R3 with eight pairs of higher and lower levels, that VTST-IOC with higher level data only at
stationary points is a more reliable dual-level procedure than VTST-ISPE with higher level energies all along
the reaction path. Although the frequencies along the reaction path are not corrected in the IOE scheme, the
results are still better than those from VTST-ISPE; this indicates the importance of optimizing the geometry
at the highest possible level.

at that level by using more limited data obtained at a higher
level. One systematic versidht! of this approach, which we
will now call VTST-IOC, where the suffix denotes interpolated
optimized corrections, involves high-level geomeiptimization

at reactants, saddle point, and products. An alternative VTST-
IC approach has also been used by several grothp& in this
approach, one first calculates the reaction path at the lower level
(which is also the first step in the VTST-IOC metRéd) but
then corrects the energy along the reaction pafthout
reoptimizing any geometries. (The motivation for this simpli-
fication is that geometry optimization is very expensive, and
for high enough higher levels, it is prohibitively expensive). In
keeping with a widely accepted language used in gquantum
chemistry, such calculations are called “single-point energies”.
Thus, to distinguish the two VTST-IC approaches, we called
the former VTST-IOC to denote interpolated optimized cor-
rections and the latter VTST-ISPE to denote interpolated single-
point energies. We will also test a simpler version of the VTST-
dIOC method, called VTST with interpolated optimized energies
(VTST-IOE), in which the higher level frequency calculation
is omitted.

For properties of stable species, a single-point energy
calculated using level X at a geometry optimized with level Y
ds denoted X//Y*? For reaction path calculations, improving the
system properties (energies, moment of inertia, and/or frequen-

t University of Minnesota. cies) by usi_ng calculations carried out with Ievgl X to correct a
* Universidad de Extremadura. set of reaction path data calculated at level Y is called X//Y if
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no geometry reoptimization is performed. If, however, station-
ary-point geometries are reoptimized at level X, it is called X///
Y, and if the geometry is reoptimized at level fintermediate
between X and Y), it is called X//¥/Y. In this language, the

question addressed here is to compare the X///Y and X/IY
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the present paper. The representative turning points of the
reaction coordinate are then defined by the solut®n$

V() = E{T) (4)

approaches to rate constant calculations. Because geometryfhe most negative solution of eq 4 is caleqT), and the most

optimization is computationally demanding, X//Y is typically

positive solution is called-(T).

less expensive than X///Y, even when many single-point energies 2.2. VTST-ISPE.To calculate the reaction rates with VTST-
are calculated. Since corrections are made all along the path/SPE, one first calculates a converged RP at the lower level Y.
can the method be not only less expensive but also more Then, a spline under tensigtis used to interpolate the energy

accurate?
A systematic VTST-IOC algorithm was presented previ-
ously1%11|n section 2, we present a systematic VTST-ISPE

difference of a few single-point energies along the RP between
the higher level X with the geometries obtained at level Y and
the energy from lower level Y; that is, one interpolates the

algorithm. In section 3, we present a series of comparisons of difference quantity

full rate constant calculations in which we directly compare
calculations at levels X, X/IlY, and X//Y. These results show
that a critical issue is how severely X//Y calculations along a
reaction path overestimate the saddle point heifjlatalculated

with geometry optimization at level X. We also present

AViels) = VEL'(9) — VEHS) (5)

as a function of the reaction coordinaewhich is the signed
distance from the level-Y saddle point along the RP. As in our

additional calculations relevant to the latter question and Previous interpolated variational transition state theory with
especially designed to see (1) if the conclusions are changed agnapping® (IVTST-M) method, a mapped coordinatés used
the qualities of the X and Y levels are improved and (2) whether t0 provide a systematic interpolating procedure for both bimo-

density functional theo”) (DFT) or the hybrid Hartree Fock—
DFT method'22is particularly useful for level Y. Section 4
summarizes the major conclusions.

2. Theory

2.1. VTST/MT. We consider four levels of dynamics
calculations: TST (conventional transition state theéh\gVT
(canonical variational theory, CVT/ZCT (CVT with zero-
curvature tunnelingd® CVT/SCT (CVT with small-curvature
tunneling)?® In all four cases, vibrations are treated with the
guantum mechanical harmonic oscillator approximation in
curvilinear coordinatég©27and rotational partition functions are

evaluated by classical mechanics. Motion along the reaction
coordinate is treated classically in TST and CVT and semiclas-

sically in CVT/ZCT and CVT/SCT. In CVT/ZCT and CVT/
SCT, the effective potential for tunneling is the ground-state
vibrationally adiabatic potential curd®e

VE(9) = Viels) + €5(s) 1)

lecular and unimolecular reactions. For unimolecular reactions,
the domain of each mapping function extends from reactants
(R) to products (P); for bimolecular reactions, it extends from
R or a well in the reactant valley (reactant well, RW) to P or a
well in the product valley (product well, PW). To map the
reaction coordinateinto thez space, the following expression

is used:
~Zarca
Z=—arcta
T L

Information from the lower level is used to obtain the parameters
S andL for the mapping. First, we define

0 _ \/VRP(S: O) - VRP(S)()_
A=~ £2 J
|| "u

0 Vge(s=0) —
= 2
lo™|"u

(6)

X=RorRW (7)

v,
).y porpw

)

wheresiis the signed distance along the reaction path in mass-ynerey, is the scaling mas®,andw? is the imaginary frequency

scaled (i.e., isoinertial) coordinates (withnegative on the

reactant side of the saddle point and positive on the product

side), Vrp(9) is the Born-Oppenheimer potential along the
reaction path (RP), andf(s) is the local zero-point energy. We
use the convention tha¥grp(s) is zero at reactants. The
transmission coefficient at temperaturés?®

«(T) = B[, dEP*(E) expB{V, s, (M — E})  (2)
where
B =1/kT (3)

k is Boltzmann’s constank is total energyP¢ is the ground-
state transmission probability in the ZCT or SCT approximation,
and §"" is the location of the canonical variational transition
state at temperaturg

A quantity that will play an important role in the development
below is the representative tunneling energy at temperdture
which we callEyT). This is defined as the maximum of the
integrand of eq 2 at temperatufdor the most reliable available
tunneling approximation, which is the SCT approximation in

of the saddle point at the lower level. Then, we define
Sy = —min(|sy, 2s5) )
and
S5 = Min(2sy, ) (10)

Then the parameters of eq 6 are obtained from these parameters
by

St s
and
_l’_
L= |SA|2 Sz (12)

For unimolecular reactions, the mapping is from a finite interval
in sto a finite interval inz. For the bimolecular reactions, the
reaction coordinats is located between{eo, ], but we may
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choose to recognize a well in the reactant and/or product difference of the frequencié8.The keyword ICL means that
valley?® Thus, the mapping is from an infinite, semi-infinite, the frequencies are corrected based on the logarithm of the
or finite range ofs to a finite range ok In all cases, we apply  ratiol!

the spline fit to the differences of the Bor®ppenheimer 2.4, VTST-IOE. In present work, we also introduce another
energies within the finite range & We write the dual-level method to perform the dual-level calculations. In this case, the
interpolated energy as interpolation scheme is the same as the VTST-IOC algorithm
explained in the previous section, except that the harmonic
VSE(S) — VIEeLp(S) + splineAVee(s), 2) (13) analysis is not carried at the higher level. Therefore, both the

energy and moments of inertia are corrected as indicated in the
. . VTST-10C method, but the frequencies along the reaction path

WhgrprLt'ﬁ dlual Ievlel ('ie'.’ VTET'ISPE level, denoted X//Y) are not corrected. We called this method VTST-IOE to denote

an is the lower level (i.e., ). ) VTST with interpolated optimized energies.

To have a general, testable method, we must systematize not. 5 5 gjectronic Structure Methods. The following treatments
only the algorithm for interpolation, which we have just ¢ gjactron exchange and correlation will be employed:
presented, but also the scheme for where to place the extra e Hartree-Fock2® MP2. Mgller—Plesset second-order
energies, which we discuss next. We will use the nptation perturbation theory?3° QCISD(T), quadratic configuration
VTST-ISPEA(l), wheren denotes the number of nonstationary jneraction based on single and double excitations and pertur-
points along the path at which single-point energies are .y inclusion of connected triple excitatiochsBLYP, DFT
calculated andlis a list of their positions in reduced units. The  ,<ad on the Becke gradient functicRdbr exchange and the
reduced unit is different on the reactant and product side of the Lee—Yang—Parr (LYP) functiona® for correlation; B3PW91
saddle point and is called on the reactant side ard on the Becke's three-parameter hybrid HF-DF-based or,l the PW9’1
product side. We takee ass<(T = 300 K) anda” ass-(T = gragient functiondF for correlation; B3P86, Becke's three-
300 K),.where these values are evaluated by a full tunneling parameter hybrid HF-DFT approach but based on Perdew’s 1986
calculation at the lower level. B gradient functiondP for correlation; B3LYP, Becke's three-

The notation is most clearly specified by an example. parameter hybrid HF-DFT approach but based on the LYP
Consider the speuflcathn VTST-ISPEﬁQ.l, il.Z), this _functional for correlatior?2 AM1, Austin model 136 AM1-SRP
means that the interpolation of eq 5 is based on single-point Aystin model 1 with specific reaction parameféf adjusted
energies evaluated at seven points, namely reactants or a reactagb, reaction R3° These treatments are combined with the
well, the saddle point, products or a product well, and four fq|iowing basis sets: STO-38,3-21G39 6-31G%0 6-31G*40
nonstationary points. (Note that one always requires reactantg_g11G*+41 and cc-pVTZ42 The AM1 and AM1-SRP models
information for a rate constant calculation so that if interpolation \;se 3 minimum basis s&t.
is based on a reactant well, one requires an eighth single-point - 5 g_Analytic Potential Surface.For reaction R1, we present

energy at reactants.) In addition, the example specification some calculations using the analytic potential energy function
denotes that the nonstationary points aret#tl, +1.2 in J1 presented previousty. This surface was fit in part to
reduced units, i.e., &= —1.20, —0.1a, +0.10, +1.20". Note experimental data.

thato. andao’ are evaluated from the low-level SCT calculation 2.7. Notation.We denote the BorrOppenheimer energy of
at 300 K for all ISPE calculations, even those at the ZCT level (aaction asAE and the Bora-Oppenheimer barrier height at

or for temperatures above or below 300 K. The goal is t0 use ap gptimized saddle point &, in both cases exclusive of zero-

a single set of points to carry out a set of calculations over a point energy. In dual-level methods, we denote a barrier height

range of temperatures. calculated using lower level geometries ¥s = 0), again
This interpolation procedure is general for all cases. When  exclusive of zero-point energy. We denote the imaginary

= 0, the differences of energies at three stationary points (i.e., frequency at the saddle point ag, and we denote distance

reactants, products, and saddle point) are used for spline fit forpetween atoms A and B at the saddle point4sB).
eq 13. We use the convention of setting the energies of the

reactants to zero; therefore, the sum of the energies of the3. Results and Discussion
products is the energy of reaction.

2.3. VTST-IOC. For comparison, we will also report some
results obtained with the VTST-IOC method. These methods

To test the ISPE procedure, we calculated reaction rates for
three atom-transfer reactions,

have been described previousl:'and our general procedure CH,+ H'H— CH,H' + H (R1)
involves two options, called SECKART and DECKART, for

interpolatingVgp and three options, called ICA, ICR, and ICL OH+ H'H— HOH' + H (R2)
for interpolating vibrational frequencies. In this paper, we use

three combinations: (i) the original SECKART-ICA meth¥d, OH+ H'CH; — HOH' + CH;,4 (R3)

(i) the DECKART-ICL combination recommended latérand

the combination we now favor on the basis of considerable with a variety of levels and combinations of levels. All three
additional experience (including unpublished work in our group), reactions were treated as bimolecular reactions without recog-
namely, SECKART-ICL. The keyword SECKART (“single nizing wells, and the vibrational frequencies were evaluated in
Eckart”) denotes the procedure in which a single Eckart potential redundant internal coordinates. For each pair of levels selected
is fit to the differences between the higher level and lower level for testing dual-level methods, we carried out four types of
energies? The keyword DECKART (“dual Eckart”) denotes calculations: (i) single-level calculations at the lower level and
the procedure in which the dual-level energies are the sum of higher level; (i) VTST-IOC calculations by the SECKART-
the values from the lower level and the difference of two Eckart ICA, DECKART-ICL, and SECKART-ICL algorithms (iii)
functional fits to two individual data point sets from the lower VTST-IOE calculations with energy corrections based on
and the higher level methdd The keyword ICA indicates that SECKART algorithm; and (iv) VTST-ISPE(l) calculations

the dual-level frequencies are corrected based on the arithmetiowith n = 0, 2, 4, and 18. Fon = 2, we consider nine possible
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TABLE 1: Energies, Imaginary Frequency, and Interatomic Distances of Reaction R1

method AE (kcal/mol) V# (kcal/mol) w*(cm™) r*(CH) (R) r*(H'H) (&)
J1 —2.77 10.23 988 1.346 0.900
HF/STO-3G 0.67 24.47 2738 1.302 0.915
MP2/3-21G —8.30 15.19 1960 i 1.401 0.895
HF/6-31G* —4.76 20.49 22410 1.378 0.923
MP2/6-31G* —11.23 14.77 1856 i 1.423 0.879
BLYP/6-31G* —2.47 5.81 962 1.448 0.891
B3P86/6-31G* —3.87 6.00 1046 i 1.433 0.881
B3PW91/6-31G* —4.91 7.25 1091 i 1.437 0.881
B3LYP/6-31G* —3.06 7.37 1145i 1.423 0.890
QCISD(T)/cc-pVTZ ~2.90 12.20 1.395 0.898
MP2/3-21G//J1 —8.54 15.09
MP2/3-21G//HF/STO-3G —9.04 13.89
MP2/6-31G*//BLYP/6-31G* —11.26 14.77
MP2/6-31G*//B3P86/6-31G* —11.25 14.76
MP2/6-31G*//B3LYP/6-31G* —11.24 14.77

aV(s=0).

lists of twos values. Then = 4 calculations use two of these
pairs, and then = 18 calculations use all nine.

The goal of the present paper is to test systematic methodolo-
gies and develop recommendations for the best stratagies,
to calculate accurate rate constants. Thus, we consider it more
useful to test dual-level strategies for cases where the lower
and higher levels differ significantly than to test the highest
affordable levels. Cases where the lower and higher levels differ
significantly provide the biggest challenges to our algorithms
for interpolating corrections to the lower level based on a
minimum amount of higher level information.

In all cases, we take the single-level calculation at the higher N
level as the goal of the interpolation method. We ask how close
can we come to a full calculation at the higher level if we can

(kcal/mol)

MEP

\

afford only a limited number of higher-level calculations, either -5 |~ HF/STO-3G .

geometry optimizations, energies, and Hessian at reactants, * MP2/3-21G/HF/STO-3G

saddle point, and products for VTST-IOC calculations or single- 10 : R i

point energies at + 3 geometries for VTST-ISPE calculations. -1.5 -1 -0.5 0 0.5 1 1.5
To compare the dual-level results with the higher level values, s (bohr)

we compute the mean unsigned ,d'fference in the logarithm of Figure 1. The Born—Oppenheimer energy along the reaction path for
the calculated rate constant at five temperatures and at fourg calculated at the HF/STO-3G level is shown as a solid curve, and

different dynamical levels the solid triangles are single-point energy calculations at the MP2/3-
21G//HF/STO-3G level. The reduced mass is 1 amu.

The calculations with MP2/3-21G as the higher level provide
a very challenging test of theory because, as seen in Table 1,
AE as calculated at the lower level deviates from the higher
whereT; is one of five temperatures (300, 400, 600, 1000, and level by 6-9 kcal/mol,V* is off by —5 to +9 kcal/mol,w* is
1500 K),j is one of the four dynamical methods (TST, CVT, off by ~800—1000 cnt?, andr*(CH') is off by 0.055-0.10 A.
CVT/ZCT, CVT/SCT), HL denotes the higher level, and X Table 1 also shows the single-point energy calculations at the
denotes the lower-level (LL), the VTST-IOC (///) result, the lower level saddle-point geometry, which remove a large part
VTST-IOE, or the VTST-ISPE (//) result. of the error in the lower level barrier height. We remind the

For most of the calculations, we set the scaling m@3squal reader that errors in this paper are always measured with respect
to 1.0 amu, the exception being the calculations with J1 as theto full calculations at the “higher level” involved in the test
lower level where we useg = 1.78 amu. (Calculated rate  and are not errors with respect to experiment.
constants are independent @f but step sizes and potential Figure 1 shows what happens when MP2/3-21G single-point
curves do depend gn) All calculations were performed on an  calculations are carried out along the HF/STO-3G reaction path.
SGI Origin 2000 supercomputer. Since HF/STO-3G predicts a positind, a late transition state

3.1. Reaction R1.Table 1 gives a survey of the energy of is expected according to Hammond’s postufédtand Table 1
reaction and saddle-point properties calculated for reaction R1shows that this indeed is what we found. As a consequence,
with a variety of electronic structure levels and also with the Figure 1 shows that the maximum of the potential energy profile
J1 potential energy surface. The most reliable results are J1 andat the MP2/3-21G//HF/STO-3G level is shifted toward reactants
QCISD(T)/cc-pVTZ. The combinations we selected as best for compared to the HF/STO-3G reaction path.
testing the theory are MP2/3-21G as “higher level” with the J1 ~ The maximum of the higher lev®kg(s) along the lower level
or HF/STO-3G as “lower level” and MP2/6-31G* as “higher path is 15.09 kcal/mol for MP2/3-21G//J1, which is in reason-
level” with BLYP/6-31G*, B3PW86, or B3LYP as “lower  able agreement with the full high-level result of 15.19 kcal/
level”. mol in Table 1.

1 5 4 ) )
MUDL = 2_0 ; J;“0910 ki (Ty) — logyo ki (T (14)
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1.8 ——— . . . ——— TABLE 2: Mean Unsigned Difference in Logarithm of the
: . Rate Constant for Reaction R1 at the X///Y or X//Y Level
' —HL (MP2/3-21G)
- STO-3G X = MP2/3-21G MP2/6-31G*
16 T J1 Y = J1 HF/STO-3G BLYP B3LYP B3P86
< L lower level 1.90 3.51 3.47 2.83 3.35
14t i IOC-SECKART-ICA 0.21 0.28 0.04 0.02 0.01
] P IOC-DECKART-ICL 0.43 0.35 0.29 0.29 0.28
S 1\ IOC-SECKART-ICL 0.21 0.29 0.04 0.02 0.02
B 12l 4 IOE-SECKART 0.27 0.29 0.09 0.06 0.05
.g ISPE-0 0.22 0.34 0.11 0.10 0.09
C
2 ISPE-2 &0.1) 0.38 0.31 0.11 0.06 0.06
T 1L ISPE-2 (0.2) 0.28 0.63 0.11 0.06 0.06
T | ISPE-2 (£0.4) 0.19 0.89 0.12 007 0.07
r ISPE-2 (0.6) 0.15 0.85 0.13 0.07 0.07
o8l ISPE-2 (£0.8) 0.12 0.96 0.13 0.07 0.07
) ISPE-2 ¢1.0) 0.11 0.90 0.13 0.07 0.07
] ISPE-2 (£1.2) 0.20 0.86 0.14 007 0.07
b ISPE-2 (1.6) 0.18 0.62 0.15 0.08 0.07
0.6 : EE—— : s ISPE-2 @2.0) 0.25 0.68 0.18 0.09 0.08
! e 14 16 18 2 22 ISPE-4 ¢:0.8,40.1) 0.12 0.83 0.13 0.08 0.07
C-H Bond distance in A ISPE-4 (-0.8,£0.2) 0.12  0.82 013 008 007
Figure 2. Bond lengths of the HH and G-H bonds of reaction R1 ~ ISPE-4 (-0.8,+0.4) 0.13 0.91 0.13 0.08  0.07
in angstroms. The solid curve represents the MP2/3-21G calculation ISPE-4 (£1.0,+0.1)  0.10 0.64 0.14 0.08  0.07
with the saddle point indicated as a solid circle, the dotted line is the ISPE-4 (:1.0,+0.2) 0.11 0.86 0.14 0.08  0.07
HF/STO-3G single-level calculation with the saddle point as a solid SPE-4 (-1.0,+0.4)  0.12 0.91 014 008 007
square, and the dashed line is the calculation based on the analytical'SPE'4 (:1.0,£0.6) 0.11 0.78 0.14 0.08 0.07
potential energy surface J1 with the saddle point as a solid diamond. ISPE-4 ¢:1.0,+0.8) - 0.11 0.69 014 008 007
ISPE-4 ¢1.0,+£1.2) 0.12 0.68 0.14 0.08 0.07
1 e . ] ISPE-4 (£1.0,+1.6) 0.15 0.75 0.15 0.08 0.08
! ISPE-4 ¢1.0,+2.0) 0.16 0.83 0.16 0.09 0.09
‘.‘ —— MP2/6-311G** 1 ISPE-4 ¢1.2,£0.1) 0.12 0.55 0.14 0.09 0.08
MP2/6-31G* | ISPE-4 41.2,40.2) 0.12 0.87 014 009 0.07
114 MP2/6-31G ISPE-4 (-1.2,+0.4) 0.12 0.92 0.14 009 0.07
“‘ 1 ISPE-4 ¢1.6,+£0.1) 0.17 0.52 0.16 0.10 0.08
& ISPE-4 ¢1.6,£0.2) 0.17 0.86 0.16 0.10 0.08
i 1 ISPE-4 ¢1.6,+£0.4) 0.16 0.92 0.16 0.10 0.08
PR ] ISPE-4 (+1.6,4£0.8) 0.16 0.76 015 009 0.08
1 ISPE-18 0.13 0.93 0.16 0.10 0.08

8 that the MP2/3-21G tests will provide a greater challenge for
interpolation methods for calculating rate constants.
The dynamics calculations with J1 as the lower surface were
] carried out with a modified version of Polyrate749.dith the
higher level information obtained from calculations with Gauss-
A ian944¢ The other calculations were carried with a modified
07 L . ' . version of Gaussrate7.9*4 The reaction paths were followed
"1 12 14 16 18 2 22 using the PageMclver algorithm?® with a step size of 0.0G#,
O-H Bond distance in A except for the B3LYP/6-31G* calculation, which used a step
size of 0.005, to avoid numerical instability. The Hessians were
Figure 3. Bond lengths in angstroms of the i and C-H bonds ~  eyaluated at every 25 gradient steps for three of the cases, with
along the reaction path of reaction R1. The MP2/6-31G* calculation the exceptions being every five steps for the J1 and every two

is shown as a solid line with the saddle point as a solid circle. The ;
BLYP/6-31G* calculation is indicated as a dotted line with the saddle St€PS for the B3LYP/6-31G* calculations. The small-curvature

point as a solid square. The B3LPY/6-31G* calculation is indicated as tunneling calculation is performed with 40 coordinate points
a short-dashed line with the saddle point as a solid diamond, and thefor each action integral and Boltzmann averaged using 40
B2LYP/6-31G* calculation is indicated as a long dashed line with the energies (but only 10 energies for J1). All calculations assign
saddle point as a solid triangle. the symmetry number of the forward reaction as 2. Vibrational
frequencies were evaluated based on a set of redundant internal
The single-point energies obtained by the MP2/6-31G* higher coordinate’¢2” that consists of five stretches, six bends, and
level with DFT and hybrid HF-DFT methods as the lower level gne doubly degenerate linear bend.
are also tabulated in Table 1. The results are typical in that DFT  The tests of the rate constant methods are shown in Table 2.
and hybrid HF-DFT methods underestimate the barrier height, This table can be used to make two kinds of comparisons: (1)
which is the usual case. Since the geometries of the stationarycompare the MUDL of different dual-level methods; (2)
points at the lower level are close to the higher level ones in compare the MUDL of the VTST-ISPE method with different
this case, the interpolated position of the saddle point at the numbers of extra points used for spline fits. The VTST-IOC
dual level is not shifted far from the saddle point optimized at method with SECKART for the energy correction and the ICA
the lower level (i.e., not shifted far from= 0). Figures 2 and  scheme for the frequency corrections is shown to be the best
3 illustrate how the reaction paths agree better for the MP2/6- dual-level method in overall performance. However, the VTST-
31G* tests than for the MP2/3-21G tests. Thus, we anticipate IOC option with DECKART for the energy correction and the

H-H Bond distance in A

0.8 -
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TABLE 3: Energies, Imaginary Frequency, and Interatomic Distances of Reaction R2

level AE (kcal/mol) V# (kcal/mol) w*(cm™) r*(OH) (R) r*(H'H) (&)
MP2/6-31G —9.73 15.88 2509 1.252 0.870
MP2/6-31G* —18.77 12.87 2229 1.292 0.842
MP2/6-311G** —19.21 9.85 1725 1.311 0.819
MP2/6-311G**//MP2/6-31G —18.37 9.59
MP2/6-311G**//MP2/6-31G* —19.10 9.92
aV (s=0).
1.6 —r———— . : —r— TABLE 4: Mean Unsigned Difference in Logarithm of the
:3 Rate Constant for Reaction R2 at the X///Y or X//Y Level
— MP2/6-31G*
'l _________ BLYP/6.31G" X = MP2/6-311G**
14018 B3P86/6-31G* A Y= MP2/6-31G MP2/6-31G*
i - - B3LYP/6-31G*
< “ lower level 2.17 1.06
c I IOC-SECKART-ICA 0.05 0.02
'é 1oL IOC-DECKART-ICL 0.10 0.11
S | IOC-SECKART-ICL 0.07 0.09
k] IOE-SECKART 0.14 0.08
s ISPE-0 0.22 0.07
St ISPE-2 ¢:0.1) 0.41 0.10
T ISPE-2 {£0.2) 0.40 0.11
T ISPE-2 ¢0.4) 0.42 0.13
ISPE-2 €-0.6) 0.46 0.17
0.8 - ISPE-2 ¢0.8) 0.50 0.20
ISPE-2 (£1.0) 0.55 0.18
ISPE-2 ¢1.2) 0.59 0.18
ISPE-2 (-1.6) 0.64 0.18
0.6 ‘ et : ISPE-2 &-2.0) 0.68 0.19
1 12 14 16 18 2 2.2
G-H Bond distance in A ISPE-4 (-0.8,+0.1) 0.45 0.13
ISPE-4 (-0.8,+0.2) 0.43 0.13
Figure 4. Bond lengths in angstroms of the-HH and G-H bonds ISPE-4 (-0.8,+0.4) 0.42 0.12
along the reaction path of reaction R2. The MP2/6-311G** calculation ~ ISPE-4 (£1.0,+0.1) 0.47 0.14
is shown as a solid line with the saddle point as a solid circle. The ~ ISPE-4 (-1.0,+0.2) 0.44 0.13
MP2/6-31G* calculation is shown as a dotted line with the saddle point ~ ISPE-4 (-1.0,+0.4) 0.42 0.13
as a solid square. And the MP2/6-31G calculation is shown as a dashed ~ISPE-4 (£1.0,£0.6) 0.43 0.13
line with the saddle point as a solid diamond. ISPE-4 (-1.0,+0.8) 0.46 0.12
ISPE-4 (£1.0,+1.2) 0.47 0.14
ICL scheme for the frequency corrections is the worst dual- :EEE:‘ (-1.0,£1.6) 0.47 0.16
. e ne W : -4 ¢1.0,4+2.0) 0.48 0.16
level correction method because it gives a barrier width thatis  |spg.4 ¢-1.2 +0.1) 0.49 0.14
too narrow. Therefore, we only use the SECKART option for ISPE-4 (-1.2,+0.2) 0.44 0.13
the energy correction in the VTST-IOE calculations. The results ~ ISPE-4 ¢-1.2,+0.4) 0.42 0.13
from the calculations using the VTST-IOE method are expected ~ |SPE-4 (-1.6,£0.1) 0.51 0.14
to be worse than those from the VTST-IOC method because :gEEj gi'g'ig'i; 8'2‘21 8'5
the ratg constants obtained from the conventional transition state | gpg_4 6:1:6:10:8) 0.45 013
theory in the VTST-IOC method are exactly the same as the ISPE-18 0.42 0.13

single higher level calculation, but they are different in the
VTST-IOE method. The single-level reaction paths were calculated with the
The VTST-ISPE-0 method gives intermediate results. One Page-Mclver algorithnt® with a step size of 0.0G#, and the
might think that the result should become better if we keep Hessians were evaluated at every 20th gradient step. The
adding more and more single-point energies for the spline fit. vibrational frequencies were evaluated with nonredundant
However, the VTST-ISPE calculations with 18 extra points are internal coordinate¥’ (Since R2 has a chainlike transition state,
not systematically better than ISPE-0. The best case is to use3N — 6 internal coordinates are enough to describe the
four nonstationary points along the low-level reaction path, generalized transition states.) The electronic energy, gradients
where two points are close to the 300 K turning points and are and Hessians were obtained with the electronic structure package
useful primarily to estimate the width of the barrier and two Gaussian94% and the dynamics calculations were carried out
other points are close to the lower level saddle point and are with a modified version of Gaussrate7.98 he small-curvature
useful primarily to locate the dual-level saddle point. (As indi- tunneling calculation was performed with 40 coordinate points
cated earlier, the dual-level saddle point is no longer=at0.) for each action integral and Boltzmann averaged using 40
3.2. Reaction R2Table 3 shows the energy, frequency, and energies. For both R2 and R3, the partition function includes
geometry information for reaction R2, and Figure 4 shows the both the2[1s, and1;, states of OH. The symmetry number
reaction path at different levels. The MP2/6-31G calculation of reaction R2 is 2.
predicts a longer breaking-bond distance than does the higher Table 4 shows the MUDL values from calculations with
level MP2/6-311G** calculation by about 0.05 A; however, the single-level and dual-level methods. Since the MP2/6-31G
saddle-point geometry obtained from the MP2/6-31G* calcula- saddle point and reaction path differ from the MP2/6-311G**
tion differs from the higher level calculation by only 0.03 A. one more than the MP2/6-31G* path does or much more than
The MP2/6-31G calculation predicts a later transition state than the deviation for any of the three cases in Table 2, we expect
does the MP2/6-31G** calculation. a larger MUDL value for MP2/6-311G*//MP2/6-31G in Table
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TABLE 5: Energies, Imaginary Frequency, and Interatomic Distances of Reaction R3

level AE (kcal/mol) V# (kcal/mol) o (cm) r*(OH) (A) r*(CH) ()
AM1 —21.15 11.12 1729i 1.352 1.204
AM1-SRP —13.28 7.37 1445 1.367 1.211
AM1-SRP//AM1 —11.34 7.3F
aV (s=0).

4, and indeed that is what we observe. The VTST-IOC scheme

provides reaction rates much closer to the true high-level Apm1-SRP//AM1 Level

TABLE 6: Mean Unsigned Difference in Logarithm of the
Rate Constant for Reaction R3 at the AM1-SRP///AM1 or

calculation than does the VTST-ISPE procedure. The ISPE-0

scheme works better than adding more nonstationary points for procedure MUDL
the interpolation. lower level 1.27
3.3. Reaction R3.Table 5 shows energetic information for :gg:gggiﬁg}—jﬁﬁ g'zlf
reaction R3. The specific reaction parameters (SRP) are taken IOC-SECKART-ICL 0.07
from the previous wor¥ where only the oxygen atom param- |OE-SECKART 0.07
eters were modified in order to obtain better agreement with ISPE-0 0.35
more reliable values for the classical barrier height (7.4 kcal/ ISPE-2 (-0.1) 0.12
mol) and the exoergicity (13.3 kcal/mol). The AM1 method ISPE-2 ¢&-0.2) 0.12
predicts a much higher barrier and lower exoergicity than the ISPE-2 (-0.4) 0.10
more reliable AM1-SRP surface. :gggg &8-2) 8-83
The energies for both the AM1 and AM1-SRP models were |SPE:2 gﬂ:o; 0.10
obtained from the Mopac, version 5.07mn, computer progfam. ISPE-2 (:1.2) 0.13
The dynamics calculations were carried out with a modified ISPE-2 (-1.6) 0.15
version of the Morate7.9.1 prograth.The reaction path is ISPE-2 (:2.0) 0.31
followed using the PageMclver algorithnt® with the cubic ISPE-4 ¢-0.8,40.1) 0.12
algorithm to estimate the first step from the saddle point. The ISPE-4 (-0.8,+0.2) 0.12
gradient is calculated every 0.G82and the Hessian is evaluated ISPE-4 (-0.8,+0.4) 0.11
at every 0.0&. The vibrational frequencies are evaluated based :gEE:i gigigg 8'3
on a set of 18 redundant internal coordindf8/which consists ISPE-4 (-1.0,+0.4) 0.11
of seven stretches, eight bends, and three torsions. The lowest ISPE-4 ¢-1.0,40.6) 0.10
real harmonic frequency, which is related to the hindered ISPE-4 ¢1.0,£0.8) 0.08
rotation between the OH and GHs very small or imaginary ISPE-4 (£1.0,£1.2) 0.08
along the reaction path, so a hindered rotation approximation EEEZ‘ Sﬁgﬁgg 8'22
would be appropriate for comparison to experiment, but only ISPE-4 &1:2:10:1) 0.13
the harmonic approximation is applied in the present work. The ISPE-4 (£1.2,40.2) 0.13
numerical step size used for the Hessian evaluation is 8,012 ISPE-4 ¢-1.2,4-0.4) 0.11
The small-curvature tunneling calculation was performed with ISPE-4 (£1.6,+0.1) 0.14
30 coordinate points for each action integral and Boltzmann :SEEj. gﬁ'g'ig'ig 8'1‘2‘
averaged using 30 energies. The symmetry number of the ISPE-4 6:1:6:10:8) 0.09
reaction is 12.
ISPE-18 0.12

Table 6 tabulates the MUDL values of R3 when AM1, AM1-
SRP///AM1, and AM1-SRP//AM1 are Compared to AM1-SRP. TABLE 7: Mean Unsigned Difference in Logarithm as a
We see that using the combination of SECKART and ICL for Function of Temperature
the VTST-IOC procedure provides the best dual-level results. 300K 400K 600K 1000K 1500 K
Adding more nonstationary points for the spline interpolation

in the VTST-ISPE procedure improves the reaction.rate and :%Vée_rslg\éeéART_ICL gégg’ 8_‘%2? g_'ggg é_'gjg é_'géé
therefore generates a smaller MUDL value. Having four |OgE-SECKART 0.248 0.145 0.075 0.079 0.105
nonstationary points that are close to the turning points at the ISPE-0 0.312 0.212 0.142 0.133 0.134
300 K SCT representative energy results in a MUDL value as ISPE-2 ¢-0.1) 0313 0232 0159 0.127 0.136
small as the SECKART-ICL combination. ISPE-4 ¢:0.1,4£1.2) 0.310 0.256 0.191 0.162  0.157

3.4. Comprehensive OverviewThe eight cases in Tables ICL options has less effect on the average errors. Although the
2,4, and 6 provide a variety of cases that allow us to search for ICA option gives a slightly smaller error, we recommend the
a robust, best-compromise method that does as well as possibléCL option because it has an important qualitative advantage,
on all of them. Table 7 therefore presents MUDL values namely, it never predicts unphysical negative frequentéies.
averaged over all eight cases. Since each individual MUDL  Next, consider the VTST-ISPE results. First of all, we see
already represented 20 tests of the methods (four dynamicalthat using a dense set of points, e.g., VTST-ISPE-18, has no
levels and five temperatures), the results in Table 7 representadvantage over using only two or four nonstationary points or
an average over 160 test cases. Since methods that do well foeven zero nonstationary points. Nevertheless, there are two test
one or another reaction do not necessarily do well in other casescases, the first case in Table 2 and the case in Table 6, where
all our final conclusions are based in Table 8. n > 0 gives significantly better results than= 0, and one

First, consider the IOC methods. As far as average errors aremight be tempted to trym > 0. If one does so, Table 8 shows
concerned, the original SECKART scheme works better than that putting the first two points very close to the saddle point is
the newer DECKART scheme, and we now retract our 1997 the best strategy. Having made this choice, the best location
recommendation to use the latter. The choice between ICA andfor adding two more points appears to be close to the turning
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TABLE 8: Average Mean Unsigned Difference in
Logarithm of 160 Calculated Rate Constants

Why does it not pay to keep adding more points in the VTST-
ISPE method? If the higher level reaction path differs from the

procedure average MUDL lower level one, then the single-point higher level calculations
lower level > 444 along the lower level reaction path are not being calculated along
|OC-SECKART-ICA 0.095 the higher level valley floor but rather part way up the valley
IOC-DECKART-ICL 0.256 walls of the higher level valle}’® This means that if one
IOC-SECKART-ICL 0.100 searches for the maximum higher level energy along the lower
:gEéS_ECKART gig% level path, the result will be systematically too high. That is

’ why we originally recommended using geometry optimization
ISPE-2 €-0.1) 0.194 at the higher level? The popularity of the single-point energy
:gEE:g gtg:ig 8:%22 approach., thoughl, caused us tp develop and evalua}te this mgthod
ISPE-2 €-0.6) 0.245 systematically. Itis very pleasing that our mapped interpolation
ISPE-2 ¢0.8) 0.265 scheme lets one recover essentially the full advantage of single-
ISPE-2 (-1.0) 0.263 point energy corrections from a very small set of such
ISPE-2 (:1.2) 0.278 corrections, namely corrections only at the stationary points.
ISPE-2 (-1.6) 0.258 . . .
ISPE-2 (-2.0) 0.306 In_ light of the gbove explanation, we believe that our con-
ISPE-4 (:0.8,+0.1) 0.242 clusions concerning _the VTST-ISPE_ methodology are not de-
ISPE-4 6:0.8:j:0.2) 0.237 pendent on the particular interpolating scheme that we have
ISPE-4 (-0.8,40.4) 0.247 used.
ISPE-4 (-1.0,0.1) 0.221 Having evaluated the methods over a range of temperatures,
:gEE:i gﬁ'g’ig-ig 8-23‘71 it is interesting to consider the MUDL values of the final most
ISPE-4 &1:01 i0:6) 0.230 hlghly_ recommepded strategies as functions of temperature. Each
ISPE-4 {-1.0,+0.8) 0.219 entry in Table 7 is an average of 32 cases (four dynamical levels
ISPE-4 ¢-1.0,+1.2) 0.223 and eight combinations of higher and lower electronic structure
ISPE-4 (-1.0,+1.6) 0.241 levels). In Table 7, we see that the MUDL decreases as the
ISPE-4 (-1.0,£2.0) 0.263 temperature increases. Thus, the dominant error contribution
:gEE:j gﬁéigg 8:%}1; comes from the lower temperatures. This is because the
ISPE-4 (+1.2,40.4) 0.251 tunneling effect is important at the low temperature, and
ISPE-4 (-1.6,40.1) 0.227 tunneling depends on the barrier width, which is harder to correct
ISPE-4 (1.6,40.2) 0.259 than the barrier height.
:gEE:ﬁ gﬁ:gig:gg 8:%28 In Table 9, we compare the bond lengths of the making and
' breaking bonds at distancesl.2o and 1.2 from the lower

ISPE-18 0.259

level saddle point. As described above, the values ahda’
points for the tunneling calculation at the representative tun- are determined based on the turning points for SCT representa-
neling energy for the lowest temperature of interest, i.e., VTST- tive tunneling energies at 300 K. This table shows that the
ISPE (0.1, £1.0) or VTST-ISPE £0.1, £1.2). The major tunneling region over which the potential representation should
conclusion though is the counterintuitive one that, if one be refined is typically a few tenths of an angstrom in width.
employs our mapped interpolation, there is no systematic In Table 10, we compare the highest energy point obtained
advantage in adding single-point energies all along the reactionfrom the interpolation based on the single-point calculations
path or even calculating any higher level single-point energies along the lower level reaction path to the corrected energy at
at nonstationary points. This conclusion is not entirely a negative = 0 and to the true barrier height obtained from the higher level
result. It leads to the following positive recommendation. Instead at the optimized saddle-point geometry. The et (s) value
of dividing one resources over + 3 or n + 4 single-point is calculated based on a parabolic fit to the three highest energy
energies, one should use only three or four points and use thesingle-point calculations from a set of 19 points (18 nonsta-
resulting savings to raise the level of electronic structure theory. tionary points plus = 0). We observe that the maz'L/LL(s)
Notice that using the uncorrected lower level gives a MUDL value is greater than the energy of the higher level saddle point
of 2.444 or typical error of 1*4 which is a factor of 278.  V*HL for all cases. This will always be the case because the
The best ISPE strategy, ISPE-0, reduces the typical error tominimum energy path (MEP) at the lower level is different from
10°187 which is a factor of 1.54. The IOC-SECKART-ICL the higher level one. There is no advantage, on the average, in
method further reduces the typical error to a factor dt99 following the procedure (that has been recommended by other
which is a factor of 1.26. Thus, the VTST-IC approach is very workers) of finding the maximum of"'LL (s) over the reaction
powerful and the recommendations for optimum VTST-IOC and path as compared to just evaluatiig}/- (s) at the lower level
VTST-ISPE strategies should be very useful. saddle point.

TABLE 9: Bond Lengths of Making and Breaking Bonds in A + HB — AH + B at Critical Points along Reaction Path

s=—1.2a]| s=1.20'

reaction level r(A—H) (A) r(H—B) (&) r(A—H) (A) r(H—B) ()
R1 J1 1.610 0.786 1.211 1.070
HF/STO-3G 1.760 0.715 1.462 1.075

BLYP/6-31G* 1.706 0.793 1.375 0.949

B3LYP/6-31G* 1.705 0.780 1.316 0.990

B3P86/6-31G* 1.647 0.793 1.354 0.947

R2 MP2/6-31G 1.767 0.738 1.065 1.096
MP2/6-31G* 1.787 0.738 1.143 1.003

R3 AM1 1.726 1.109 1.215 1.325
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TABLE 10: Comparison of the Energy of Highest Energy Point along Lower Level Path to the Value as = 0 and to the
Energy at the Geometry Optimized at the Higher Level M)

higher level lower level V#HL VHULL (s = Q) maxyH/LL(s)
MP2/3-21G J1 15.19 15.09 15.52
HF/STO-3G 15.19 13.89 16.17
MP2/6-31G* BLYP/6-31G* 14.77 14.77 14.80
B3LYP/6-31G* 14.77 14.77 14.76
B3P86/6-31G* 14.77 14.76 14.77
MP2/6-311G** MP2/6-31G 9.85 9.59 10.17
MP2/6-31G* 9.85 9.92 9.96
AM1-SRP AM1 7.37 7.37 7.40
averagddeviatior] from V#Ht 0.22 0.23
TABLE 11: Mean Unsigned Difference in Logarithm at calculations. The present paper presents a mapped interpolation
Different Dynamical Levels scheme for recovering essentially the full benefit of higher level
TST CVT CVT/ZCT CVT/SCT single-point energy corrections on the basis of carrying out such
lower level 2654 2628 2362 2130 calculations only at the stationary points, which shouldl prqwde
|IOC-SECKART-ICL 0.000 0.053 0.145 0.201 useful computer resource savings for future applications.
IOE-SECKART 0.094 0.101 0.136 0.190 Although the VTST-ISPE is successful at reducing the errors,
:ggg-g o) 8-12%? g-zlg? 8-11571 8-128;3 the VTST-IOC method results in much more accurate rate
: : : : : : nstants on the aver for thr ifferent r ions with eigh
ISPE4 (0 1.41.2) 0173 0225 0241 0.222 constants on the average for three different reactions with eight

different pairs of higher and lower levels. Because the lower
level reaction path deviates from the minimum energy path that
would be obtained with the higher level of electronic structure
~theory, applying single-point energy corrections based on the
" lower level geometries results in too large a value for the
corrected barrier height. Therefore, we recommend VTST-10C
as a more reliable dual-level method for reaction rate calcula-
tions based on the direct dynamics scheme when geometry
. . optimization at the higher level is computationaly affordable.
larger than the true barrier height. Therefore, \./TST'ISPE It is also possible to perform the VTST-IOC calculation without
calculations (or similar schemes that correct energies based ONe corrections in frequencies, and we denote this method as
the reaction path from a lower level) are less reliab_le than VTST- VTST-IOE. The results from t’he VTST-IOE calculations are
IOC. The present paper add_s to evidence prewé@gé%yhat significantly worse than the VTST-IOC results at high temper-
the \./TST'IOC method provides a good approximation to atures. Nevertheless, they are still more accurate than VTST-
reaction rate constants. . . ISPE calculations over the whole temperature range. The VTST-
Next, we return to T,al?'e U and. consider the IOE algorithm. |5 method shows us the value of carrying out a higher level
Table 7 shows that this is only slightly less accurate than I0C ¢, metry optimization procedure in the dual-level schemes. It
at temperafures up to 600 K. The main advantage of Improving js petter to carry out more accurate calculations including
the frequencies is that it yields much more accurate results at - ;o4 metry optimization at the three stationary points than to carry

= 1000 K. The fact that the IOE results are un_iformly better ¢ many additional single-point energy calculations along the
than the ISPE ones shows the overriding importance of \ ,oia raaction path.

optimizing the saddle-point geometry at the highest possible
level.
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